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Two-level system fluctuators in superconducting devices have demonstrated coherent coupling with super-
conducting qubits. Here, we show that universal quantum logic gates can be realized in these two-level systems
solely by tuning a superconducting resonator in which they are imbedded. Because of the large energy sepa-
ration between the fluctuators, conventional gate schemes in the cavity QED approach that are widely used for
solid-state qubits cannot be directly applied to the fluctuators. We study a scheme to perform the gate opera-
tions by exploiting the controllability of the superconducting resonator with realistic parameters. Numerical
simulation that takes into account the decay of the resonator mode shows that the quantum logic gates can be
realized with high fidelity at moderate resonator decay rate. The quantum logic gates can also be realized
between fluctuators inside different Josephson junctions that are connected by a superconducting loop. Our
scheme can be applied to explore the coupling between two-level system fluctuators and superconducting
resonators as well as the coherent properties of the fluctuators.
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I. INTRODUCTION

Spurious two-level system �TLS� fluctuators are consid-
ered a serious source of low-frequency noise in supercon-
ducting qubits,1 and the characterization of these fluctuators
in solid-state devices has a long history.2 Most recently, co-
herent coupling between TLS fluctuators and a supercon-
ducting phase qubit was observed via the novel energy split-
tings in spectroscopic measurements.3–5 It was shown that
the TLS fluctuators have much longer decoherence times
than the superconducting qubits,6 raising the possibility of
realizing quantum manipulation on these fluctuators.7

The key question in manipulating the TLS fluctuators is
how to implement the required coherent manipulation and
readout. Located sparsely inside solid-state devices, the fluc-
tuators usually do not interact with each other, and their
states are hard to control. The coupling between the fluctua-
tors and solid-state devices provides us with a tool to achieve
the quantum manipulation.3,5 However, conventional gate
schemes using cavity QED approach that are usually ex-
ploited for solid-state qubits cannot be applied to this system
because of the large energy separation between the fluctua-
tors. In this work, we will present a gate scheme that exploits
the controllability of the superconducting resonator to imple-
ment high fidelity gates on the TLS fluctuators,8–12 even
when the decay of the resonator is a few megahertz. The
superconducting resonator acts as a knob that controls the
dynamics of individual fluctuator, as well as coupling them
together. Working with practical parameters from the super-
conducting Josephson-junction resonator, we will design
single-qubit and two-qubit quantum logic gates in the pres-
ence of resonator decay. Our scheme takes into account the
full coupling Hamiltonian between the TLS fluctuators and
the resonator. Readout of the fluctuators can also be per-
formed by measuring the transmission through the resonator.
This scheme can be extended to fluctuators in different Jo-
sephson junctions by connecting the junctions into the same
superconducting loop due to the nonlocal nature of the mi-

crowave mode of the resonator. This work hence provides a
realizable design for coherent manipulation of multiple TLS
fluctuators, which is closely related to current experimental
efforts in studying the fluctuators and their coupling with
superconducting resonator modes.

Various superconducting resonators in the microwave re-
gime, including superconducting transmission lines, Joseph-
son junctions, superconducting quantum interference devices
�SQUIDs�, and superconducting lumped element resonators,
have recently been demonstrated and have shown quantum
behavior and strong coupling with superconducting
qubits.13–16 Superconducting resonators are also promising
systems for studying quantum effects such as single-photon
generation and lasing,17 and one of us has shown recently
that a Josephson junction can be used to probe various prop-
erties of TLS fluctuators, e.g., to resolve the mechanism that
couples the fluctuators to the junction.18 While we will focus
on the Josephson-junction resonator, we want to emphasize
that our results can be readily generalized to other supercon-
ducting resonators.15,19 The paper is organized as the follow-
ing. In Sec. II, we will study the coupled system of the fluc-
tuators and a Josephson-junction resonator, including the
driving on the resonator. In Sec. III, we will derive the ef-
fective Hamiltonian for the TLS fluctuators in the dispersive
regime where the quantum operations are implemented. We
will also derive the residual coupling between the fluctuators
and the resonator in this regime. In Sec. IV, we will present
detailed scheme for single-qubit and two-qubit quantum
logic gates. Then, we will estimate the decoherence of the
fluctuators during the gate operations in Sec. V. We will also
test the fidelity of the quantum operations with numerical
simulation of the full Hamiltonian, taking the resonator de-
cay into account. In Sec. VI, we will discuss the readout of
the fluctuators and the extension of gate scheme to fluctua-
tors inside different junctions. The conclusions will be given
in Sec. VII.
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II. SYSTEM

Consider the system in Fig. 1�a�, where TLS fluctuators
inside the amorphous layer of a Josephson junction couple
with the junction resonator in an rf SQUID loop. With total
capacitance C0, Josephson energy EJ, loop inductance L, and
magnetic flux �ex inside the SQUID loop, the Hamiltonian
of the resonator can be written as

Hc =
P�

2

2C0
− EJ cos�2e�/�� +

�� + �ex�2

2L
�1�

in terms of the phase � and the conjugate momentum P�.
This Hamiltonian can be approximated as an oscillator mode
with a phase shift �s from the origin,

Hc � P�
2 /�2C0� + C0�c

2�� − �s�2/2, �2�

and the phase shift satisfies

��s + 2eLEJ sin�2e�s/�� = − ��ex. �3�

The frequency of the resonator can be written as20

�c =� 1

LC0
+

4e2EJ cos�2e�s/��
�2C0

, �4�

which can be tuned in a large range by the magnetic flux �ex.
In addition, driving can be applied to the resonator by, e.g.,
applying an external radio-frequency current �Ic to the reso-
nator with �Ic�.

The TLS fluctuators reside inside the tunneling layer and
can couple with the junction resonator by various mecha-
nisms. For example, the coupling to the critical current of the
junction takes the form −�2e /��EJ��nj�n ·�� n, where j�n is the
polarization and magnitude of the coupling. Denoting the
resonator annihilation operator by a with �−�s

=�� / �2C0�c��a+a†�. Let j�n= �jxn ,0 ,0� for simplicity and �d
be the driving frequency. The total Hamiltonian of the
coupled system in the rotating frame can be written as

Ht = Hc + H1 + H�, �5�

Hc = ��ca
†a + 	�a + a†� , �6�

H1 = �
n

����n/2��nz + gn�a�n+ + a†�n−�� , �7�

H� = �
k

��kak
†ak + ck�ak

†a + a†ak� , �8�

where Hc is the Hamiltonian of the driven resonator mode
with the detuning �c=�c−�d and the driving amplitude 	
=�Ic

�� / �2C0�c�, H1 is the Hamiltonian of the fluctuators
including the coupling between the fluctuators and the reso-
nator mode, and H� is the Hamiltonian of the thermal bath
connected to the resonator. Here, the index n labels different
fluctuators, �n
 are the Pauli operators, �n=�n−�d is the
detuning of the fluctuators, and

gn = EJjxn
��/�2C0�c�sin�2e�s/�� �9�

is the coupling constant. Note that coupling constant for
other coupling mechanisms such as dielectric coupling be-
tween the fluctuators and the resonator can be derived
similarly.18 The decay of the resonator is modeled by its
coupling to a bath of modes described by the annihilation
operator ak with frequency �k and coupling constants ck. The
decay rate is given by �=��ck

2���−�k�.21 The Hamiltonian
Ht describes a typical cavity QED system between the fluc-
tuators and the junction resonator.22

Note that the driving on the resonator generates a time-
dependent oscillation in the phase variable with the ampli-
tude ��d=�Ic /C0�c

2. To keep the nonlinear term in the Jo-
sephson energy to be small, the oscillation amplitude needs
to be small, e.g., �2e��d /���0.1. With 1 /L	4e2EJ /�2 and
typical parameters EJ	2�100 GHz and C0	10−12 pF,
we estimate that the driving amplitude is bounded by 	
�2�1 GHz.

III. DISPERSIVE REGIME

In this work, we study the quantum logic operations in the
dispersive regime where the coupling gn is much weaker
than the detuning between the fluctuators and the resonator:
gn� ��nc� with �nc
�n−�c. In this regime, we can apply the
following unitary transformation,8

U = e−	�a−a†�/�c�
n

e−gn�a†�n−−�n+a�/�nc, �10�

to the system. After the transformation, the Hamiltonian be-

comes H̃t=UHtU
† with H̃t=Hc+ H̃1+ H̃x to the second order

of gn /�nc. The Hamiltonian is now divided into three parts: a
Hamiltonian for the resonator Hc, an effective Hamiltonian

for the fluctuators H̃1, and a small residual coupling between

the fluctuators and the resonator H̃x.

The Hamiltonian H̃1 can be written as

H̃1 = �
n
���̃n

2
�nz +

�nx

2
�nx + Hint + H̃k, �11�

Hint = � �mn��n+�m− + �m+�n−�/2, �12�

FIG. 1. �Color online� A Josephson-junction resonator contain-
ing spurious two-level system fluctuators denoted by arrows. �a�
Fluctuators in a single junction and �b� fluctuators in different
junctions.
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H̃� = �
n,k

�gnck/�nc���n+ak + ak
†�n−� , �13�

which includes the effective single-qubit terms, an exchange-
like interaction Hint, and an induced coupling to the bath

modes of the resonator H̃�. We derive the detuning for the
single qubits as

�̃n = �n + �gn
2/�nc��1 − 2	/�c� , �14�

and the Rabi frequency as

�nx = 2	gn/�nc. �15�

The coupling constant in the exchangelike interaction can be
derived as

�mn = gmgn��mc + �nc�/��mc�nc� . �16�

In Sec. IV, we will study the implementation of the quantum

logic gates with the Hamiltonian H̃1.

The residual coupling H̃x can be written as

H̃x = �
n

gn
2

�nc
�nz�a†a + 	��c − 2�nc

2�nc�c
��a + a†� , �17�

where the first term is the Stark shift for the resonator and the
second term is a coupling to the resonator amplitude origi-
nated from the finite driving amplitude. Because of the am-
plitude shift in the unitary transformation in Eq. �10�, the
average occupation of the resonator is now zero with �a†a�
�0. Hence, the first term has a small effect on the fluctuators
during the quantum operations. The second term can induce
a small modification to the coupling constant �mn in the ef-
fective interaction in Eq. �12� which will be studied in detail
below.

IV. QUANTUM LOGIC GATES

Universal quantum gates can be performed by controlling

the effective Hamiltonian H̃1. Here, we present the scheme
for the single-qubit and two-qubit gates with typical param-
eters from superconducting Josephson-junction resonators.

Single-qubit gates on a chosen TLS �e.g., n=1� can be
performed by adjusting the frequency of the driving source
to be close to the frequency of this TLS. By adjusting the
driving amplitude and the detuning of the resonator, the ef-

fective qubit parameters �̃1 and �1x can be adjusted in a
wide range. For a given detuning �c, one can adjust the

driving amplitude 	 in Eq. �14� to have �̃1=0 and obtain the
spin-flip gate X. The gate time can be found to be �g
=��nc /2	gn at the chosen 	. One can also adjust 	 to have

�̃1=�1x to implement the Hadamard gate H. Here, the driv-
ing amplitude is chosen to be

	 =
��c�nc + gn

2��c

2��c + gn�gn
, �18�

with the gate time �g=��nc /2�2	gn. In Fig. 2, we plot the
gate times of the Hadamard gate and spin-flip gate with the
parameters �1=2�40 MHz and g1=2�40 MHz. It can

be shown that gate times on the order of 10 ns can be
achieved.

In Table I, we list two sets of gate parameters at the de-
tunings �c=2�160 MHz for the Hadamard gate and �c
=2�120 MHz for the spin-flip gate, respectively, as an
example. The corresponding driving amplitudes are listed in
the table. For fluctuators not involved in the gate �e.g., n

=2�, we have ��̃n��nx due to the fact that the fluctuators
are well separated in energy. Hence, the gate operation only
induces a dynamic phase to these fluctuators. Meanwhile, the
effective interaction between the fluctuators is also prevented
from generating controlled phases due to the off-resonance

condition �1n� ��̃1− �̃n�.
Two-qubit gates can be performed via the effective ex-

changelike coupling in Eq. �11�. This coupling can generate
SWAP gate and �SWAP-like controlled gates when the two

qubits are near resonance with �̃m− �̃n	0.23 However, as
noted above, the TLS fluctuators in our system are usually
far off resonance from each other due to the large energy
separations and are also hard to be manipulated individually.
We will now show that two fluctuators can be brought into
effective resonance by controlling the resonator mode, and
hence high fidelity two-qubit gates can be performed. We
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FIG. 2. �Color online� Upper plot: gate times for Hadamard gate
�solid curve� and spin-flip gate �dashed curve� versus detuning �c.
Lower plot: effective couplings �2 and �2� versus �c �main plot�;
energy E1 �solid curve� and E2 �dashed curve� versus 	 at �c

=300 MHz �inset�.

TABLE I. Example parameters for implementing the spin-flip
gate �X� and the Hadamard gate �H�.

�c�2�MHz� 	�2�MHz� �1x�2�MHz�
Time
�ns�

X 120 −60 60 8.3

H 160 −32 21.3 16.6
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first rewrite the single TLS energy in H̃1 as �n�En /2��̄nz

where En
2= �̃n

2+�nx
2 and

�̄nz = cos �n�nz + sin �n�nx, �19�

with cos �n= �̃n /En and sin �n=�nx /En. Note �̄nx and �̄ny
can be defined similarly. As the driving amplitude increases,
the Rabi frequency increases accordingly and the detuning

�̃n will be affected. As plotted in the inset of Fig. 2, a driving
amplitude can be found where En is the same for the two
fluctuators. Denoting these fluctuators as n=1 and n=2, we
have E1=E2 at this point, and they are now in resonance. In
the rotating frame, the effective Hamiltonian for these two
fluctuators then becomes

H12
rot = �1�̄1z�̄2z + �2��̄1+�̄2− + �̄1−�̄2+� , �20�

with the coefficients

�1 = ��12�1�2/4E1
2� , �21�

�2 = ��12/4��1 + �̃1�̃2/E1
2� , �22�

respectively. Meanwhile, at large driving amplitude with 	

	�c, the second term in the residual coupling H̃x in Eq. �17�
induces virtual transitions between the resonator and the
fluctuators, which modifies the coupling constant �2 to be-
come �2�. Denoting the second term in Eq. �17� as fn�nz�a
+a†�, we can derive

�2� = �2 +
f1f2�E1 + E2 − 2�c�
2�E1 − �c��E2 − �c�

. �23�

In Fig. 2, we plot both the couplings �2 and �2� versus the
resonator detuning �c for comparison. A small but finite
modification of the coupling coefficient can be seen. Note

when �E1,2−�c�	�12, the second term in H̃x induces real
transitions between the fluctuators and the resonator, which
can seriously affect the gate operations and should be
avoided when designing the gates.

Two-qubit gates of the form of S0=exp�−iH12
rott� can now

be performed in the rotating frame. A SWAP gate has the
gate time �g=� /2��2��. The �1 term in Eq. �20� contributes
only phase factors in the computational basis to the gate
operation. With the following parameters: �1=0, �2=−2�
60 MHz, g1=2�40 MHz, g2=2�30 MHz, and �c
=2�300 MHz, we find that E1=E2=2�74.0 MHz at
	=2�277.2 MHz. Here, �2�=−2�1.8 MHz and the
SWAP gate can be performed with a gate time of �g
=137.9 ns.

We note that controlled quantum logic gates can also be
performed using the Cirac-Zoller gate which was first stud-
ied in ion trap quantum computing.24 This gate includes three
steps: a swap gate between the first TLS and the resonator, a
conditional phase gate between the resonator and the second
TLS, and another swap gate between the first TLS and the
resonator. The swap gate in the first and third steps can be
implemented by choosing �c=�1 and 	=0, and the gate time
is � /2g1 which is of the order of a few nanoseconds. In the
conditional phase gate, the driving frequency is close to the
chosen qubit but is still in the dispersive regime. The Stark

shift �g2
2 /�2c��2za

†a generates a conditioned phase shift on
this TLS when the resonator is in state �1�. The gate time
is tcg=��2c /2g2

2. At g2=2�30 MHz and �2c=2�
120 MHz, tcg	30 ns. Note that the first TLS is subject to
stronger decoherence during the swap operation due to its
near-resonance coupling with the resonator, as will be dis-
cussed below.

V. DECOHERENCE

The intrinsic decoherence of the TLS fluctuators is very
slow and can be ignored during the gate operation. However,
the coupling between the resonator and the fluctuators in-
duces decoherence that cannot be neglected. In the dispersive
regime, the decoherence rate can be calculated from the

noise term H̃� in Eq. �11�. It can be shown that the decoher-
ence rate is on the order of �d

−1	gn
2� /�nc

2 during the quantum
logic gates with �d

−1�� in the dispersive regime. In contrast,
the decoherence rate during the swap operation in the Cirac-
Zoller gate is �d

−1	� /2 which is much faster than the deco-
herence rate in the dispersive regime. In Table II, we list the
gate times, the decoherence rates, and the ratios of gate times
to decoherence times for the gates discussed above at �
=4 MHz.

One can estimate the gate fidelity approximately as

F = e−�g/�d � 1 − �g/�d �24�

which depends on the ratio between the gate time and the
decoherence time. Using the parameters given above, we can
estimate the ratio �g /�d. In Table II, it is shown that �g /�d
�10−2 for the two-qubit gate in our scheme and �g /�d�2
10−2 for the SWAP operation in the Cirac-Zoller gate at the
damping rate �=4 MHz. The gate fidelities can thus reach
0.99 with our protocols. This indicates that the Josephson-
junction resonator is an effective tool in generating high fi-
delity quantum operations even at a quality factor �Q
=�c /�� of only Q=7800 and hence can be used to demon-
strate quantum coherence in the TLS fluctuators.

The term �nz�a+a†� in the residual coupling H̃x in Eq.
�17� can induce additional decoherence. Here, quantum fluc-
tuations of the resonator mode cause extra noise even at zero
resonator amplitude. The spectrum of the quantum fluctua-
tions can be derived as

�aa†�� = ��� − �c�2 + �2/4�−1� , �25�

from which the decoherence rate can be derived as

TABLE II. Gate times �g, decoherence rate �d
−1, and the ratios

�g /�d for single-qubit and two-qubit gates. The column labeled as
“2-Qubit” is for the two-qubit gates studied in our scheme and the
column labeled as “swap op.” is for the swap operation in the Cirac-
Zoller gate �Ref. 24�.

1-Qubit 2-Qubit Swap op.

�g ��nc /gn	 � /2��2�� � /2gn

�d
−1 gn

2� /�nc
2 gn

2� /�nc
2 � /2

�g /�d 10−3 0.01 0.02
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�d
−1 	 �	2gn

4/�nc
6 �� . �26�

As can be seen, the decoherence rate is to the fourth order of
gn /�nc when the driving amplitude 	 is comparable with the
detunings. With the above parameters, we find that �d

−1

�1 kHz which can be neglected during the gate operations.
To study the effectiveness of the quantum logic gates, we

perform numerical simulations on the gate operations using

the full Hamiltonian H̃t. The decay of the resonator is simu-
lated using the Lindblad master equation.21 This simulation
includes both the effect of the residual coupling in Eq. �17�
and the effect of the resonator decoherence. We calculate the
fidelities of the Hadamard and SWAP gates using the method
prescribed by Nielsen’s formula for the gate fidelity25 over a
wide range of resonator decay rate. The results are plotted in
Fig. 3. This simulation shows that the fidelity can be higher
than F=0.99 for ��5 MHz for single-qubit and two-qubits
gates, which also agrees with our estimations above. Hence,
at moderate decay rate for the Josephson-junction resonator,
high fidelity quantum logic gates can be achieved.

VI. DISCUSSIONS

As demonstrated in recent works, the superconducting
resonator can be used to detect the states of qubits or
fluctuators.8,18 In the strong damping regime, the amplitude
of the superconducting resonator adiabatically follows the
dynamics of the TLS fluctuators, as was shown in our previ-
ous work.18 A phase-sensitive measurement of the resonator
can hence provide a direct measurement of the TLS states. In
the moderate damping regime where the damping rate is
weaker than the coupling constant, a measurement of a TLS
can be performed by adjusting the resonator frequency to be
in the vicinity of this TLS, but with the condition gn� ��nc�.
Here, the Stark shift resulting from this TLS is much stron-
ger than that from other qubits. A measurement of the reso-
nances in the transmission spectrum of the resonator can then

provide a measurement of the qubit state.8 Such measure-
ments can be realized with current electronics where the
resonator and the driving can be adjusted and switched on
and off in nanoseconds, much faster than the decoherence
time of the fluctuators.

Our scheme can also be extended to TLS fluctuators in-
side different junctions. Because the wavelength of the mi-
crowave mode of the superconducting resonator is much
longer than the dimension of this circuit, fluctuators in dif-
ferent junctions can couple to the same resonator mode when
the junctions are connected by a superconducting loop. As is
illustrated in Fig. 1�b�, two junctions are connected to the
central superconducting island labeled by � that is associ-
ated with the junction resonator. It can be shown that effec-
tive coupling between fluctuators in the two junctions can be
derived exactly as described by Eq. �11�. In this configura-
tion, quantum logic gates can be performed with essentially
the same approach as was presented above. This circuit can
also be extended to include multiple junctions. This system is
thus intrinsically “scalable” where fluctuators in multiple
junctions couple nonlocally. Note that the frequency of the
superconducting resonator is determined by the total capaci-
tance, the total effective Josephson energy, and the induc-
tance in the circuit, and will decrease as the number of junc-
tions increases. This can set a limit on the number of
junctions that can be connected into the circuit.

TLS fluctuators have been studied for a long time. Previ-
ously, the fluctuators are often considered as a source of
decoherence in superconducting qubits, causing the so-called
1 / f noise. In this work, we focused on studying the coherent
manipulation of the fluctuators which can provide insights
about the dynamics, the coupling mechanism, and the relax-
ation of the fluctuators in superconducting devices. Although
the success in implementing universal quantum logic gates
makes the TLS fluctuators potential candidate for quantum
computing, we want to emphasize that the main aim of this
work is to provide a practical scheme to demonstrate the
coherence behavior of the fluctuators. Our scheme can be
useful for current experiments that investigate the coupling
between the fluctuators and superconducting
resonators.3,4,7,15,18,19

VII. CONCLUSIONS

To conclude, we have shown that universal quantum logic
gates can be implemented on spurious TLS fluctuators via
the coupling between the fluctuators and the Josephson-
junction resonator. Taking into account the full Hamiltonian
of the coupled system and the effect of the noise, our numeri-
cal simulation of the quantum operations showed that quan-
tum logic gates can be performed with high fidelity even at
resonator decay rates of a few megahertz. We have used
practical parameters for the junction resonators and the fluc-
tuators in this study. Our work hence indicates that quantum
coherence and quantum manipulation of TLS fluctuators can
be readily demonstrated. The results here can be generalized
to other types of superconducting resonators which are ex-
plored in recent experiments.15
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FIG. 3. �Color online� Gate fidelity versus damping rate � by
numerical simulation. Solid curve: SWAP gate and dash-dot curve:
Hadamard gate. Two fluctuators are included in the simulation for
both gates. For the Hadamard gate, we use the parameters �2=
−2�80 MHz and g2=2�30 MHz for TLS n=2.
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